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Summary

Perioperative goal-directed haemodynamic therapy (GDHT) includes a variety of protocolised approaches to the 

assessment and management of the circulatory system and blood flow for patients undergoing surgery. Here we present 

updated consensus statements on perioperative GDHT developed during the 11th Perioperative Quality Initiative (POQI) 

consensus conference meeting held in London, UK in June, 2023. Statements relating to the definitions, components, and 

underlying physiology surrounding GDHT are proposed. We recommend considering use of GDHT in specific settings 

including during cardiopulmonary bypass (CPB), after cardiac surgery, and during hip fracture surgery. However, the level 

of evidence is weak in these settings. Clinicians can consider use of GDHT protocols on an individual patient basis for 

moderate- to high-risk patients undergoing major noncardiac surgery; however, we recommend against use of fixed low-

dose inotrope infusions as part of GDHT protocols. We do not recommend routine use of GDHT protocols for patients 

undergoing major elective abdominal surgery. There is currently insufficient evidence to recommend routine use of 

GDHT during emergency abdominal surgery. Future research should focus on individualisation of GDHT to individual 

patients’ haemodynamic requirements, newer paradigms such as technology-assisted delivery of GDHT protocols, and 

the role of predictive models using artificial intelligence.
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Editor’s key points

• The Perioperative Quality Initiative is an interna-

tional multidisciplinary organisation that organises 

consensus conferences on clinical topics related to 

perioperative medicine.

• The 11th Perioperative Quality Initiative (POQI) 

consensus conference met in 2023 to update best 

practices in perioperative medicine including goal-

directed haemodynamic management, periopera-

tive blood pressure, and fluid therapy in periopera-

tive medicine.
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• This consensus statement reports 11 updated 

consensus statements on perioperative goal-directed 

haemodynamic therapy (GDHT).

• GDHT can be beneficial in specific settings including 

during cardiopulmonary bypass, after cardiac sur-

gery, and during hip fracture surgery.

• Future research should focus on individualisation of 

GDHT to individual patients’ haemodynamic re-

quirements and technology-assisted delivery of 

GDHT protocols including predictive models and 

artificial intelligence.

The assessment and management of patients’ haemodynamic 

status throughout the physiological and pathophysiological 

stress response to surgery is a core aspect of high-quality 

perioperative care. Interventions include administration of i. 

v. fluids and inotropic or vasoactive medications to improve 

perfusion and oxygen delivery to tissues, thereby reducing 

complications and improving clinical outcomes. Haemody-

namic status can be assessed using a range of simple physi-

ological measurements including arterial blood pressure, 

heart rate, and fluid balance to more advanced assessments 

such as estimates of cardiac stroke volume, cardiac output, 

and systemic vascular resistance. Certain relative or absolute 

values of these measured variables can be used as interven-

tion targets within perioperative algorithms. Achieving opti-

mised haemodynamic status has been proposed to improve 

postoperative patient outcomes, but despite clinical and 

physiological plausibility, little definitive clinical effectiveness 

evidence exists regarding these goal-directed interventions. 

Suggested mechanisms of benefit relate to the adequacy of 

blood flow supplying oxygen and nutrients to organs and tis-

sues to maintain their function while aiming to avoid iatro-

genic harm.

Given the importance of such goal-directed haemodynamic 

therapy (GDHT) approaches and the evaluation of their clinical 

effectiveness, the 11th meeting of the Perioperative Quality 

Initiative (POQI-11) was convened in 2023, which included a 

subgroup tasked with updating and building on previous POQI 

guidance on GDHT for perioperative clinicians. 1—3 Here we 

present our recommendations with relevance to current clin-

ical practice, and propose future research questions in this 

area.

Methods

The Perioperative Quality Initiative (POQI) is an international 

multidisciplinary nonprofit organisation that organises 

consensus conferences on clinical topics related to perioper-

ative medicine. Each POQI conference assembles a collabora-

tive group of diverse national or international experts from 

multiple healthcare disciplines to develop consensus-based 

recommendations in perioperative medicine. The group 

members were reimbursed for travel, accommodation, and 

meals but did not receive honoraria. The POQI methodology 

combines elements of both evidence appraisal and expert 

opinion, while acknowledging the limitations of available 

literature to provide practical recommendations.

The POQI-11 was convened on July 4 and 5, 2023, in London, 

UK, to update previously published consensus statements 

on best practices in perioperative medicine by three work 

groups covering goal-directed haemodynamic management,

perioperative blood pressure, and fluid therapy in periopera-

tive medicine. 1—4 The outputs of the POQI-11 work groups 

covering perioperative blood pressure and fluid therapy are 

published separately. 5,6

A modified Delphi method was used, designed to garner the 

collective knowledge of the diverse group of experts to answer 

clinically important questions around perioperative blood 

pressure, fluids, and haemodynamic therapy. The members of 

the whole POQI-11 group (Appendix 1) were recruited based on 

their expertise in perioperative management of patients un-

dergoing surgery, and members of the GDHT work group (the 

authors of this manuscript) had particular expertise in peri-

operative fluid and haemodynamic monitoring and therapy 

(Supplementary Fig. 1). Before the conference, topics for dis-

cussion at the consensus meeting were longlisted, and the 

three work groups of several members each were assembled to 

systematically review and create a bibliography of relevant 

literature on their topic. This list was used to identify impor-

tant questions to be addressed in the conference.

For publications to be included in this paper, Ovid MEDLINE 

was searched from 1990 to June 2023 using the following 

search terms: ‘((controlled clinical trial).ti,ab,pt OR (random-

ized).ti,ab OR (randomised).ti,ab OR (randomly).ti,ab OR (trial). 

ti) AND ((haemodynamic).ti,ab OR (haemodynamics).ti,ab OR 

(hemodynamics).ti,ab OR (hemodynamic).ti,ab OR (fluid).ti,ab) 

AND ((cardiac output).ti,ab OR (cardiac index).ti,ab OR (oxygen 

delivery).ti,ab OR (oxygen consumption).ti,ab OR (stroke vol-

ume).ti,ab OR (optimization).ti,ab OR (optimisation).ti,ab OR 

(Goal-directed).ti,ab OR (Goal-orientated).ti,ab OR (Algorithm). 

ti,ab OR (guided).ti,ab OR (goal directed).ti,ab OR (goal orien-

tated).ti,ab OR (oxygenation).ti,ab OR (individualised).ti,ab OR 

(individualized).ti,ab) AND ((surgery).ti,ab OR (perioperative). 

ti,ab OR (intraoperative).ti,ab)’. The references of relevant ar-

ticles were reviewed and further articles retrieved if deemed 

relevant.

At the first plenary session of the conference, work groups 

from the blood pressure, fluids, and GDHT research groups 

presented draft consensus statements and the evidence base 

on which these had been constructed to the whole POQI-11 

group. The full POQI-11 group then split into the work 

groups for discussion. In subsequent plenary sessions, each 

work group summarised the breakout discussions and any 

modifications to the consensus statements to the assembled 

whole POQI-11 group. Feedback and assistance was received, 

facilitated by four meeting chairs, to refine the consensus 

statements. During a total of three rounds of work group dis-

cussion and plenary presentation and feedback, the state-

ments were further refined before nonanonymous voting took 

place to determine whether unanimous consensus could be 

achieved on each statement presented. During the final ple-

nary session, POQI-11 group members voted to signal either 

formal agreement with the final statements, or signal their 

disagreement. In the latter case, a statement of disagreement 

would be included in the report. All statements were unani-

mously approved, unless stated otherwise. As a large trial of 

GDHT (OPTIMISE II) 7 had recently been completed but was not 

published at the time of the POQI meeting, a small number of 

statements were constructed as drafts without knowledge of 

the trial results by the GDHT work group, with alternatives 

based on the possible trial outcomes. These statements were 

then ratified by the whole POQI-11 group by online discussion 

after the meeting when the trial results were released.

The Grading of Recommendations Assessment, Develop-

ment, and Evaluation (GRADE) system was used to rate the
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certainty of evidence underpinning recommendations (high, 

moderate, low, or very low). 8 Where evidence was lacking and 

consensus could not be reached, recommendations for future 

research were generated. After the meeting, statements were 

presented at the Evidence Based Perioperative Medicine 

(EBPOM) 2023 World Congress in London on July 6, 2023, where 

attendees were invited to participate in an anonymous vote to 

indicate their agreement/disagreement for each recommen-

dation using Slido (Slido, Bratislava, Slovakia; https://www. 

slido.com). After a brief explanatory presentation, each 

statement was presented in turn by the three work group 

chairs. There was no presentation of the evidence or rationale 

that had led to each statement. Attendees voted either ‘agree’ 
or ‘disagree’ using the Slido app or website, or could abstain 

from voting on a statement-by-statement basis. Voting for 

each statement was closed when there were no further votes 

accumulating. Attendees were only able to see the results of

voting after voting for each statement was closed. To preserve 

anonymity, we did not document the institutional affiliation 

or professional category of these respondents. The composi-

tion of the whole POQI-11 group and of the work groups, and 

the POQI-11 work flow is shown in Supplementary Figure 1. 

In this report, we summarise the consensus statements on 

GDHT and present the results of the anonymous votes of 91 

attendees of the EBPOM 2023 World Congress on July 6, 2023 

(Table 1).

Summary of consensus statements and 
supporting evidence

See Table 1.

QUESTION 1. What is meant by ‘goal-directed haemodynamic 

therapy’ (GDHT)?

Table 1 Perioperative Quality Initiative 11 (POQI-11) goal-directed haemodynamic therapy (GHDT) consensus statements and rec-

ommendations. N/A, not applicable; not presented for voting at the Evidence Based Perioperative Medicine (EBPOM) conference

because the statement does not include a recommendation, or * because the statement was not presented pending the results of the 

OPTIMISE II clinical trial.

Strength Level of 

evidence

Agreement 

by EBPOM 

delegates % 

(no. of votes)

Statement 1 GDHT is an umbrella term for a complex intervention using monitoring 

techniques and physiological targets to help guide administration of 

fluids, vasopressors, and inotropes

N/A N/A N/A

Statement 2 The goals of haemodynamic management are to optimise tissue 

oxygenation and support normal cellular metabolic function

N/A N/A N/A

Statement 3 We recommend that GDHT protocols should have clearly defined 

component parts and physiological targets

Strong Very low 99 (83)

Statement 4 The GDHT evidence base is complex as it comprises a variety of protocols, 

interventions, monitoring technologies, surgical procedures, patient 

factors, and outcomes

N/A N/A N/A

Statement 5 Fluid responsiveness is a key component of GDHT and is best defined as an 

increase in stroke volume in response to intravascular fluid 

administration

N/A N/A N/A

Statement 6 Vasopressors and inotropes are additional GDHT components that can be 

titrated to achieve haemodynamic goals

N/A N/A N/A

Statement 7 Dynamic variables (such as pulse pressure variation and stroke volume 

variation) can be used to assess fluid responsiveness but have limitations

Strong Moderate N/A

Statement 8 We recommend that an increase (>10—15%) in stroke volume in response 

to a fluid bolus should be used to identify fluid responsiveness

Strong High 92 (86)

Statement 9 We recommend that GDHT protocols aim to optimise stroke volume or 

cardiac output and mean arterial blood pressure with fluids, 

vasopressors, and inotropes

Strong Moderate 94 (87)

Statement 10 Clinical trials of GDHT have been conducted in a range of surgical 

situations using a variety of different protocols with mixed results

N/A N/A N/A

Statement 11 We do not recommend routine use of GDHT protocols for patients 

undergoing major elective abdominal surgery

Strong High N/A*

Statement 12 We recommend considering use of GDHT protocols on an individual 

patient basis for moderate- to high-risk patients undergoing major 

noncardiac surgery

Weak Moderate N/A*

Statement 13 We recommend against routine inclusion of fixed low-dose inotrope 

infusions in GDHT protocols

Strong High N/A*

Statement 14 We recommend considering use of goal-directed perfusion during 

cardiopulmonary bypass to reduce the incidence of acute kidney injury

Weak Moderate 97 (35)

Statement 15 We recommend considering use of GDHT after cardiac surgery to reduce 

postoperative complications

Weak Moderate 96 (46)

Statement 16 There is currently insufficient evidence to recommend routine use of GDHT 

protocols in patients undergoing emergency abdominal surgery

Weak Low N/A

Statement 17 We recommend considering use of GDHT to reduce perioperative 

complications in patients with hip fracture

Weak Low 83 (84)
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Statement 1: GDHT is an umbrella term for a complex inter-

vention using monitoring techniques and physiological tar-

gets to help guide administration of fluids, vasopressors, and 

inotropes.

Statement 2: The goals of haemodynamic management are to 

optimise tissue oxygenation and support normal cellular 

metabolic function.

Technologies developed in the 1970s allowed the detailed 

measurement and manipulation of the cardiovascular system. 

Early studies suggested that survivors of major high-risk sur-

gery displayed higher values of cardiac output and global ox-

ygen delivery (DO 2 ) than nonsurvivors. 9 This led to the 

hypothesis that targeting goals for cardiac output and DO 2 
(initially at ‘supranormal/survivor’ levels) for all patients un-

dergoing surgery would reduce postoperative morbidity and 

mortality. 10

DO 2 is the total amount of oxygen in millilitres delivered by 

the cardiovascular system to tissues per minute:

DO 2 (ml min − 1 ) = cardiac output (CO) (L min − 1 ) × arterial ox-

ygen content (CaO 2 )

The arterial oxygen content is optimised by increasing 

arterial oxygen saturation and haemoglobin, with dissolved 

oxygen contributing very little. This leaves cardiac output as 

the major variable that can be manipulated perioperatively to 

increase DO 2 with the aim of matching cellular metabolic 

demands.

Adequate organ perfusion pressure is also important in 

maintaining organ blood flow, and is achieved through 

maintaining mean arterial pressure (MAP) within the organ’s 
autoregulatory range. 11 This is a fundamental haemody-

namic goal and can be supported by maintaining MAP 

>60—65 mm Hg. 2,5

In order to achieve optimal perfusion pressures, blood flow, 

tissue perfusion, and tissue oxygenation, GDHT uses moni-

toring and algorithm bundles to guide achievement of hae-

modynamic endpoints, optimising preload, afterload, and 

contractility by administration of fluids, vasopressors, and 

inotropes, respectively. The optimisation of preload is an 

individualised approach with dynamic tests, assessing 

whether patients respond to fluids or alternatively to an au-

totransfusion by passive leg raise.

The approach of GDHT is supported by the observation that 

preload and cardiac output optimisation after major surgery 

are associated with optimised microvascular flow and tissue 

oxygenation. 12 This association has been named ‘haemody-

namic coherence’ indicating that improved macrocirculation 

and improved global oxygen supply result in improved 

microcirculation and tissue oxygen supply. 13 However, this 

coherence can be lost at the tissue level in some organs during 

shock, reperfusion injury, inflammation, and infection 

resulting in reduced tissue oxygen supply despite optimised 

macrocirculation.

In summary, GDHT is an individualised approach to 

maintain or restore tissue perfusion by optimising global car-

diovascular dynamics including organ perfusion pressure, 

blood flow, and thus oxygen delivery to the tissues.

QUESTION 2. What are the components of GDHT protocols? 

Statement 3: We recommend that GDHT protocols should 

have clearly defined component parts and physiological 

targets (strong recommendation; very low-quality evidence).

As detailed below and in Figure 1, there are a number of 

strategies available to achieve the overarching aims of GDHT. 

As a result, not all GDHT interventions are directly compara-

ble. The term GDHT is best considered an umbrella term which 

in all approaches should be defined more clearly in relation to 

its components, namely monitoring technology used, primary 

and secondary physiological target(s), interventions used to 

achieve these targets, and the period during which the inter-

vention is applied.

Statement 4: The GDHT evidence-base is complex as it 

comprises a variety of protocols, interventions, monitoring 

technologies, surgical procedures, patient factors, and 

outcomes.

Although there are common themes and approaches within 

GDHT, when discussing and evaluating this intervention the 

breadth of approaches, technologies, and clinical settings 

should be acknowledged (Fig. 1). Early approaches to GDHT 

from the 1980s and 1990s used the pulmonary artery catheter 

to target deliberate increases in cardiac output and DO 2 using 

fluids, inotropes, and red blood cell transfusion in a variety of 

major surgeries. 10 Contemporary trials typically use minimally 

invasive (arterial pulse wave analysis or oesophageal Doppler-

based) devices, target a range of variables including cardiac 

stroke volume or so-called dynamic cardiac preload variables, 

and might use fluids with or without inotropes and vasopres-

sors in the intraoperative phase, postoperative phase, or both 

and in a wider variety of surgical procedures. In the intervening 

period, numerous background changes in surgical and peri-

operative care have been introduced (e.g. minimal access sur-

gery, enhanced recovery protocols, improved preoperative 

screening and preparation) that might modify the impact of 

perioperative haemodynamic management. Although there 

are common conceptual goals as stated above, the differences 

in approach and time taken for the evidence base to accumu-

late hamper the interpretation of most meta-analyses in this 

area. A further issue when comparing outcomes from GDHT 

research is not only the heterogeneity of interventions but also 

of the outcome measures used in the trials, an issue high-

lighted as a key limitation in evidence syntheses. 14 These fac-

tors underscore the need for large, robust clinical effectiveness 

trials aiming to provide definitive evidence of the effects of 

GDHT in a contemporary setting.

Statement 5: Fluid responsiveness is a key component of 

GDHT and is best defined as an increase in stroke volume in 

response to intravascular fluid administration.

Administration of i.v. fluid, guided by markers of cardiac 

output, has always been a key part of GDHT interventions, 

either in isolation or combined with inotropes and vasopres-

sors. Conceptually, the aim is to achieve the best possible 

cardiac performance based on the Frank—Starling mechanism, 

describing the ability of a normal ventricle, at a set level of 

inotropy and afterload, to increase contractility when 

increased venous return leads to a raised end-diastolic volume 

(preload). This results in increased cardiac stroke volume. 

However, this mechanism has a maximum plateau of stroke 

volume. Further increases in venous return beyond this point 

will increase left ventricular end-diastolic pressure and vol-

ume without associated increases in stroke volume. The 

finding that stroke volume increases in response to a rapid 

increase in venous return caused by bolus fluid administration 

is described as ‘fluid responsiveness’. The GDHT framework 

views such increases in stroke volume as beneficial, even
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though it considers fluid administration only in the isolated 

context of cardiac performance without reference to intra-

vascular stressed volume (the volume exerting distending 

pressure against the vessel walls), unstressed volume (the 

volume up to the point of filling the vessels but without 

exerting pressure) or total body water. A healthy unfasted 

subject with normal baseline circulating volume usually 

meets the definition of fluid responsiveness. Fears that this 

paradigm encourages unhelpful ‘fluid overload’ in more 

healthy patients 15 have been partly allayed by the finding that 

intervention and control groups in more recent GDHT trials 

ultimately receive similar volumes of fluid. 16

Alternative techniques to identify improvements in cardiac 

output from increased venous return, and thence cardiac 

preload, have been described, notably the passive leg raise 

manoeuvre to deliver a fluid autotransfusion. Proponents 

argue that this avoids the situation of administering exoge-

nous fluid as a diagnostic test when the ventricle is already 

working at near-maximal end-diastolic volume. However, the 

practicality of the passive leg raise manoeuvre is limited in the 

perioperative phase given the need to frequently re-establish 

the presence or absence of fluid responsiveness within 

GDHT approaches. The relatively small volume of fluid boluses 

used within GDHT algorithms (~250 ml) might provide a safety 

margin in this regard, with a negative response indicating that 

further bolus fluid administration should cease. At this point,

stroke volume or cardiac output is continuously monitored, 

with further fluid challenge indicated only if the values 

decrease below those initially achieved.

Statement 6: Vasopressors and inotropes are additional GDHT 

components that can be titrated to achieve haemodynamic 

goals.

Vasopressors increase vascular tone, systemic vascular 

resistance, and cardiac afterload, whereas inotropic agents 

increase cardiac contractility, often with a positive chrono-

tropic effect. Depending on the degree of receptor affinity, 

individual drugs can have relatively pure actions, or a mixture 

of vasopressor and inotropic effects depending on dose (e.g. 

epinephrine, norepinephrine). These agents can form part of a 

GDHT algorithm in several ways. Firstly, some GDHT protocols 

only use fluid loading and cardiac output responses for the 

mainstay of their intervention, 17 but give guidance on broader 

haemodynamic targets such as MAP and heart rate, with the 

expectation that clinicians will use vasopressors or inotropes 

to achieve these secondary targets. Secondly, GDHT algo-

rithms can include a range of secondary targets derived from 

cardiac output monitors, and protocolise the titration of ino-

tropes and vasopressors to achieve these targets. For example 

in the FEDORA trial, after fluid loading and attainment of an 

‘optimal’ stroke volume (i.e. when there was no further in-

crease in response to a 250 ml fluid load), MAP and cardiac

Perioperative GDHT: Components

Anaesthetists
Nursing & nonphysician

Staff:

Type of surgery organ
system, approach,
emergency/elective
Risk profile

Patients:

Oesophageal Doppler
Bioimpedance

Arterial waveform +/–
calibration

Pulmonary artery
catheter-based

Cardiac output
monitors:

Dynamic preload
markers (SVV, PPV,
SPV)

Systemic vascular
resistance

Cardiac output
Stroke volume
Measured variables:

Contractility e.g. CI >
2.5 L/min/m2

after fluid loading

>2000 dynes.sec/cm5/m2

Vascular resistance
e.g. SVRI

SVV targets e.g. <13%
Maximise SV
Fluid responsiveness:

+/– Red blood cells

Inotropes

Vasopressors

Volume: Fluid
boluses (size and
composition), PLR

InterventionMonitorSetting TargetVariables

Postoperative
Intraoperative
Preoperative
Timing:

Central venous pressure
Serum lactate
Central venous oxygen saturations
Urine output
Arterial pressure
Tissue oxygenation

Complementary/alternative monitoring:

OR: Broad overarching target e.g.
DO2l > 600 ml/min/m2

Secondary goals may be based on broad 
recommendations e.g. maintain MAP > 65 mm Hg

Defined physiological targets + defined interventions
to achieve the goal

Algorithm:

Fig 1. Component parts of any goal-directed haemodynamic therapy (GDHT) approach, including the clinical setting, monitoring tech-

nology, physiological variables measured, and the interventions used to target the chosen physiological goals. CI, cardiac index; DO2I,

indexed global oxygen delivery; MAP, mean arterial pressure; PLR, passive leg raise; PPV, pulse pressure variation; SPV, systolic pressure

variation; SV, stroke volume; SVRI, systemic vascular resistance index; SVV, stroke volume variation. The target values included do not

constitute practice recommendations by the Perioperative Quality Initiative (POQI) GDHT work group, but illustrate a range of values that

have been targeted in GDHT protocols tested in clinical trials.
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index were then examined. Vasopressors or inotropes were 

commenced and titrated as needed to achieve a MAP >65 mm 

Hg and cardiac index >2.5 ml min − 1 min − 2 , respectively. 18 

Many trials have used a similar sequential approach of vaso-

pressor and inotrope titration to achieve a range of haemo-

dynamic targets. 19—21 Thirdly, a smaller number of trials have 

primarily focussed on stroke volume optimisation with fluids, 

along with broader haemodynamic goals, but also incorpo-

rated a fixed low-dose infusion of an inodilator (dopexamine 

or dobutamine that have mixed inotropic and mild vaso-

dilatory effects). 16,22 The rationale for the inclusion of these 

agents is that at the low doses used they are likely to have 

marginal effects on cardiac inotropy but could have beneficial 

effects on microvascular blood flow (likely leading to improved 

tissue oxygenation) and systemic inflammation. 12,23

Statement 7: Dynamic variables (such as pulse pressure 

variation and stroke volume variation) can be used to assess 

fluid responsiveness, but have limitations (strong recom-

mendation, moderate-quality evidence).

The advent of minimally invasive cardiac output monitors 

using arterial pulse wave analysis provides a range of variables 

that could be derived and explored as therapeutic targets. 

Analysis of the beat-to-beat changes in pulse pressure, systolic 

pressure, or area under the arterial waveform curve 

throughout the respiratory cycle leads to derived variables 

such as pulse pressure variation (PPV), systolic pressure vari-

ation (SPV), and stroke volume variation (SVV). Given that 

variation in these measures has a relationship with preload 

(assuming constant vascular compliance and cardiac 

contractility), with less beat-to-beat variation with increasing 

stroke volume, they have been termed dynamic markers of 

preload responsiveness. It has been suggested that these 

variables could simplify approaches to GDHT, and reduce the 

volume of fluid administered to determine fluid responsive-

ness. An SVV of >12—13% has previously been proposed as a 

threshold above which fluid responsiveness is very likely, 24,25 

and is used as a trigger for fluid bolus in certain GDHT 

algorithms. 21

However, the reliable and accurate measurement of hae-

modynamic variations throughout the respiratory cycle de-

pends on a number of factors, including a regular cardiac 

rhythm and the presence of mechanical ventilation with suf-

ficient tidal volume, typically >8 ml kg − 1 . These conditions 

limit the applicability of these markers, particularly with the 

current awareness of the potential risks of higher intra-

operative tidal volume. 26 A large pragmatic study on the ac-

curacy of SVV and PPV in predicting a future positive response 

of stroke volume (>10% increase) with a fluid bolus suggested 

they were not suitable for routine use, particularly in sponta-

neously ventilating patients after surgery. 27 Despite this, they 

might have some utility, for example at very low values (e.g. 

<5% SVV) the probability of fluid responsiveness is very low, so 

a fluid bolus can be avoided even if suggested by the current 

cardiac stroke volume measurement. 17,28

Statement 8: We recommend that an increase (>10—15%) in 

stroke volume in response to a fluid bolus should be used to 

identify fluid responsiveness (strong recommendation, high-

quality evidence).

Bearing in mind the above limitations of the dynamic 

markers of preload responsiveness and of alternative means 

of increasing venous return to test fluid responsiveness, we 

maintain that a stroke volume response to a rapidly

administered (within 5 min) fluid bolus of ~250 ml should be 

used as the primary means of determining fluid responsive-

ness. An increase of at least 10% in stroke volume shortly after 

the end of the bolus should be considered a positive response. 

The threshold of a 10—15% increase in stroke volume has 

been well-established, originally from studies determining the 

smallest change in stroke volume that could be reliably 

detected with the newer-generation minimally invasive car-

diac output monitors. 29—31 Although monitoring technologies 

have evolved since this early work (towards autocalibrated or 

uncalibrated devices that are more suited to detecting trends 

rather than giving accurate absolute values of cardiac out-

put), 32—34 these SV thresholds became embedded in algo-

rithms investigated in perioperative clinical efficacy trials, 

with promising results. 16,35

In order to elicit potentially beneficial increases in cardiac 

output, pharmacodynamic studies have shown that a fluid 

challenge should be administered rapidly, taking a maximum 

of 5—10 min to administer. 30 Slower infusions over 15—30 min 

can be subject to redistribution rather than a ‘challenge’ per se. 

Also, changes in the wider cardiovascular system such as the 

degree of sympathetic stimulation or changes in administered 

vasoactive agents can present confounding variables in 

interpreting the response. The maximal effect on stroke vol-

ume is likely to be seen 1 min after completion of a rapid bolus, 

so this should be taken as the point of assessing whether a 

response has been positive. 36

Despite early protocols in critical care suggesting fluid 

volumes of 500 ml or greater could be used for fluid challenges, 

it has been shown that smaller volumes of 4 ml kg − 1 , or ~250 

ml, are sufficient to identify a similar proportion of ‘fluid re-

sponders’. 37 Although fluid boluses in these algorithms have a 

combined diagnostic and therapeutic action, in the case of 

fluid ‘nonresponders’, fluid infusion is by definition unnec-

essary. As the core aim of haemodynamic therapy is to avoid 

iatrogenic harm from fluid excess, the volume of fluid bolus 

should be no more than essential. Between 40% and 70% of 

boluses administered in perioperative studies did not lead to 

an improvement in stroke volume and were therefore 

unnecessary. 27,30,38,39 Although 250 ml is a reasonable 

compromise with minimal risk of iatrogenic harm (particu-

larly in protocols where a low SVV is used as a ‘brake’ 17,28 ), 

there has been more recent interest in even lower volumes of 

fluid bolus.

The 100 ml ‘mini fluid challenge’ given over 1 min has been 

proposed as an indicator of a patient’s subsequent response to 

the remainder of a 250 ml bolus, allowing cessation of the 

bolus if the response is negative. Studies suggest that a 5—6% 

increase in SV can be reliably detected by certain pulse wave 

analysis technologies if the cardiovascular status is otherwise 

stable, and serves as a reasonable predictor of the response to 

a full 4ml kg − 1 bolus. 38,40 However, this has not been investi-

gated rigorously in large effectiveness trials incorporating a 

wider range of surgical settings and monitoring technologies. 

Other manoeuvres using heart—lung interactions to detect 

fluid responsiveness without giving fluids (e.g. the end-

expiratory occlusion test) appear less reliable than the mini 

fluid challenge technique or less suited to the perioperative 

setting. 39,41

Statement 9: We recommend that GDHT protocols aim to 

optimise stroke volume or cardiac output and MAP with 

fluids, vasopressors, and inotropes (strong recommendation; 

moderate-quality evidence).
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Cellular metabolic function depends on adequate blood 

oxygen content and tissue perfusion (blood flow). Given the 

dependency of tissue blood flow on blood volume, vascular 

tone, and cardiac performance (contractility, rate, and relax-

ation), GDHT protocols include interventions that can address 

these key areas. It is almost impossible to modify any of these 

factors in isolation because of their complex interactions and 

the mixed effects of most available therapies. Most GDHT al-

gorithms have a primary target (e.g. fluid responsiveness, to 

address circulating volume and volume-related cardiac per-

formance), but typically will give either broad or protocolised 

guidance on other aspects such as vascular resistance (or in a 

simpler expression, systemic arterial pressure) and possibly 

cardiac output. Data from the INPRESS 42 and FEDORA 18 trials, 

although targeting different primary physiological goals, un-

derscore the potential benefits of incorporating MAP targets 

after optimisation of cardiac stroke volume with fluid bolus 

therapy. In most GDHT trials that have suggested benefit, 

stroke volume ‘optimisation’ is taken to mean a value of stroke 

volume that no longer increases (by ≥10%) in response to a 

further fluid challenge. At this stage the patient’s cardiovas-

cular system is considered to have been brought to the point of 

maximum cardiac output for a particular cardiac function 

curve, although the cardiac output measured will almost 

certainly be less than a true absolute ‘maximum’ that could be 

achieved in different circumstances such as hard exercise. 

Additional targets can then be considered, such as maintain-

ing MAP values that have been associated with a lower risk of 

postoperative organ injury (e.g. >60—70 mm Hg). 5 Arterial ox-

ygen content is a factor in DO 2 , and is particularly dependent 

on arterial oxygen saturation and haemoglobin concentration. 

Using ventilation and oxygen administration to ensure 

adequate arterial oxygen saturation and maintaining haemo-

globin concentration above a lower threshold is also advised to 

support GDHT while avoiding supranormal values. 17,28 Mea-

sures of the balance between oxygen delivery and utilisation, 

particularly central or mixed venous oxygen saturations, have 

also been studied, but have not been used extensively as a 

primary target of perioperative GDHT.

The rationale for including both fluids and cardiovascular 

drugs in GDHT algorithms is that although each of these 

therapies can have overlapping effects, no single intervention 

can address all the potential haemodynamic therapeutic 

needs of a patient undergoing major surgery. Fluid boluses can 

address deficits in circulating volume and optimise volume-

dependent cardiac performance, but alone might not reliably 

improve systemic arterial pressure, particularly in patients 

with compliant arterial systems under anaesthesia. 

Conversely, although certain adrenergic drugs can increase 

venous return from the splanchnic and unstressed circulatory 

compartments, and increase cardiac contractility and arterial 

pressure, in isolation these effects could mask an underlying 

total intravascular volume deficit. Balancing the various as-

pects of haemodynamic status using these available therapies 

is a rational approach that has been investigated in numerous 

studies.

Although currently this is the predominant approach that 

has been developed through serial iterations in clinical trials, 

there are conceptual limitations. Firstly, none of the haemo-

dynamic devices currently used in clinical care directly mea-

sure tissue perfusion. Furthermore, most of the available 

monitored variables are surrogates. For example, fluid 

responsiveness does give some information about blood vol-

ume status, but there are no available direct measures of

stressed and unstressed blood volumes. Estimates of stroke 

volume and cardiac output are often based on arterial pulse 

wave analysis, with attendant limitations. Although echocar-

diography can measure both stroke volume and contractility 

more directly, practical limitations have hampered its uptake 

into widespread use in protocolised GDHT. MAP is by defini-

tion impacted by cardiac output and vascular resistance. 

Secondly, available therapies (fluids, inotropes, vasopressors) 

can be considered to be relatively nonspecific in that they have 

whole-system actions tending to increase DO 2 , whereas a 

deficit in perfusion of a particular organ might be owing to 

impaired regional vascular tone or flow mismatch, or a relative 

deficit in either the stressed or unstressed volume 

compartment.

QUESTION 3. Does GDHT improve postoperative outcomes? 

Statement 10: Clinical trials of GDHT have been conducted in a 

range of surgical situations using a variety of different pro-

tocols with mixed results.

Depending on the definitions, >100 randomised trials of 

perioperative GDHT have been conducted since the late 

1980s. 14,43,44 A majority have been conducted in major 

abdominal and gastrointestinal surgery, with other trials a 

heterogeneous mix of multiple specialties and settings (elec-

tive or emergency) or focussed on a single specialty. The het-

erogeneity introduced by these diverse populations is further 

increased by almost all available variants of monitoring de-

vices, physiological targets and interventions included in the 

protocols, and by the wide-ranging definitions of many of the 

outcomes studied.

Numerous systematic reviews, with meta-analysis where 

appropriate, have attempted to synthesise this complex ev-

idence base. 14,16,43 A number of similar broad conclusions 

have been drawn. Firstly, the evidence base remains domi-

nated by smaller trials (n<500) with significant risk of bias. 

Although there tends to be no small studies effect found, it is 

notable that no trial with >200 patients has found a mortality 

benefit. Secondly, the heterogeneity of interventions and 

outcomes means that the aggregated findings tend to be of 

low to moderate certainty, often with wide confidence in-

tervals. Thirdly, there are inadequate data to comment on 

certain patient groups, particularly those undergoing emer-

gency surgery.

With these caveats, prior evidence syntheses suggest that 

use of GDHT can reduce complications after surgery, with the 

strongest suggested benefit around reducing postoperative 

infections (e.g. odds ratio [OR] for surgical site infection 0.54 

[95% CI 0.45—0.66], for pneumonia 0.69 [0.55—0.88]), and for 

anastomotic leakage (OR 0.61 [0.43—0.87]), with a trend to-

wards a reduction in postoperative kidney injury. 14 Reductions 

in postoperative hospital length of stay and possibly mortality 

are also suggested, 14 although these findings became less 

certain in later syntheses. 43 There is a suggestion of a greater 

benefit in gastrointestinal and abdominal surgery and in 

higher-risk patients, again with limited certainty. However, a 

consistent conclusion is that larger, definitive trials of a size 

that would reliably detect modest differences in standardised, 

patient-centred outcomes are needed.

Statement 11: We do not recommend routine use of GDHT 

protocols for patients undergoing major elective abdominal 

surgery (strong recommendation, high-quality evidence).

Statement 12: We recommend considering use of GDHT pro-

tocols on an individual patient basis for moderate- to high-
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risk patients undergoing major noncardiac surgery (weak 

recommendation, moderate-quality evidence).

Statement 13: We recommend against routine inclusion of 

fixed low-dose inotrope infusions in GDHT protocols (strong 

recommendation, high-quality evidence).

The OPTIMISE II trial was proposed to address ongoing 

uncertainty in the perioperative GDHT evidence base. Despite 

accrual of further evidence from smaller trials during the trial 

recruitment period, results remained mixed, 18,19,45,46 and the 

need for a definitive trial remained. This international trial 

recruited 2498 patients of ASA physical status ≥2 and aged ≥65 

yr undergoing elective surgery on the gastrointestinal tract of 

at least 90 min duration. Patients were randomised to a GDHT 

intervention or usual care, with the trial intervention period 

running throughout and for 4 h after surgery. The intervention 

used an uncalibrated pulse wave analysis cardiac output 

monitor and 250 ml fluid boluses to optimise stroke volume 

(based on 10% increases), with the addition of a fixed (non-

titrated) low dose of inodilator once volume loading had 

started. A secondary ‘check point’ ensured that SVV was >5% 

before each sequential fluid bolus was given. Either dopex-

amine or dobutamine could be chosen as the inodilator, but 

owing to availability only dobutamine was used. In the control 

group, a pragmatic approach was taken, but with a structured 

fluid maintenance prescription (1 ml kg − 1 h − 1 ) and general 

haemodynamic targets (MAP 60—100 mm Hg, heart rate <100 

beats min − 1 ) recommended for all participants.

There was no difference in the primary outcome of post-

operative infection (23.2% intervention vs 22.7% control 

group); however, more intervention patients suffered an acute 

cardiac event within 24 h of surgery that required treatment 

(3% vs 1.7%, P=0.03). This was because of a higher incidence of 

arrhythmias and was ascribed to the effect of routine dobut-

amine administration in this group. The incidence of cardiac 

events had equalised by 30 days after surgery and there were 

no differences in secondary outcomes including acute kidney 

injury (AKI), hospital length of stay, or mortality within 6 

months of surgery.

OPTIMISE II was designed to test ‘real-world’ clinical 

effectiveness; it had broad inclusion criteria and was con-

ducted in a variety of hospitals globally, so the results have 

wide generalisability. It also had robust methodology, with 

high intervention compliance, high rates of data follow-up, 

and numerous measures to remove bias. When combined 

with the large randomised sample size, it seems unlikely that 

further trials of this iteration of GDHT in this patient group will 

have different findings. This is the basis for recommending 

that this type of GDHT approach should not be used as routine 

care in broad patient groups similar to those in OPTIMISE II. 

Furthermore, inclusion of routine fixed-dose dobutamine ap-

pears to have led to adverse cardiac effects with at least 

moderate short-term consequences (i.e. medical intervention 

was required), and so should be avoided.

The reasons behind the lack of benefit can only be specu-

lated. The overall incidence of postoperative infection was 

lower than that in previous studies, 16 and the proportion of 

patients having minimal access surgery had increased. It is 

possible that such temporal improvements in wider periop-

erative care reduced the potential impact of haemodynamic 

interventions.

Within a large trial in a broad patient population such as in 

OPTIMISE II, there can be heterogeneity of treatment effect, so 

subgroups that benefit more than the average effect size might

not be identified. Exploring this thoroughly would be a sig-

nificant research challenge. OPTIMISE II also did not overturn 

the proposed underlying physiology of GDHT; there is no 

reason to believe that the concepts of fluid loading and 

volume-related cardiac performance are flawed just because 

clinical benefit in a broad population was not seen. Aside from 

the presumed harmful effects of routine dobutamine infusion, 

there was no other signal of harm from the intervention. 

Together this leads us to suggest that in selected cases, for 

example high-risk surgical settings with particularly complex 

haemodynamics, experienced clinicians can reasonably 

choose to use cardiac output monitoring and aspects of GDHT 

interventions to assess and manage haemodynamic status. 

This is in keeping with prior evidence syntheses suggesting 

that there might be more benefit from GDHT interventions in 

very high-risk surgery or patients. 43

Clinicians should also consider the degree to which control 

group care in any GDHT trial with neutral results is reflective 

of their own fluid therapy practice before dismissing the 

findings outright. For example, in order to reduce unwarranted 

variation, many trials give guidance on good practice in rela-

tion to fluid maintenance volumes (e.g. 1 ml kg − 1 h − 1 of hy-

potonic fluid in the OPTIMISE II trial, with separate discrete 

boluses of 250 ml isotonic fluid for volume loading based on 

clinical judgement in the control group). It is notable that 

observational studies of clinical practice suggest that 

personnel are a stronger driver of fluid volume variation than 

patient or surgical factors, and that extreme high or low vol-

umes are associated with worse outcomes. 47—49 It remains 

possible that such apparently unexplained variation in fluid 

practice is harmful, and the rational, structured approach seen 

in trial control groups might have benefits itself.

Cardiac surgery

Statement 14: We recommend considering use of goal-

directed perfusion (GDP) during CPB to reduce the incidence 

of AKI (weak recommendation, moderate-quality evidence).

During CPB, cardiac output is determined by the flow of the 

CPB machine, which has been historically based on patient 

body surface area and core temperature. Pump flows of 2.2—2.8 

L min − 1 m − 2 were considered adequate. However, observa-

tional studies have demonstrated an independent association 

between pump flow-determined oxygen delivery and post-

operative AKI, identifying an optimal indexed DO 2 (DO 2 I) of 

>270 ml min − 1 m − 2 . 50,51 These observations were subse-

quently confirmed by two RCTs. Ranucci and colleagues 52 

demonstrated in a European multicentre RCT that GDP 

maintaining DO 2 I at ≥280 ml min − 1 m − 2 compared with con-

ventional perfusion (based on body surface area and temper-

ature) was effective in reducing stage 1 AKI. Similarly, 

Mukaida and colleagues 53 demonstrated in a single-centre 

RCT in Japan that GDP (with DO 2 I >300 ml min − 1 m − 2 during 

CPB) resulted in a significantly reduced incidence of AKI (from 

30.4% to 14.6%). A recent meta-analysis including three RCTs 

(with n=777) confirmed that GDP reduces AKI with a relative 

risk of 0.52 (95% CI 0.38—0.70). 54 Apart from reduced AKI, no 

further treatment effects of GDP have been studied or 

demonstrated, and therefore any benefit regarding morbidity 

other than AKI and mortality are unknown. Nevertheless, the 

rationale of optimising tissue oxygenation by individualised 

oxygen delivery is well-justified, bearing in mind that the CPB 

prime volume induces haemodilution, and the decrease in
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haemoglobin during CPB can then be adjusted by an individ-

ualised increase in pump flow to maintain adequate DO 2 . The 

beneficial effect of GDP is also reflected in recent cardiac 

Enhanced Recovery After Surgery (ERAS) recommendations 

that include GDP as an intervention which plays a role in 

preventing organ injury associated with CPB. 55

Statement 15: We recommend considering the use of GDHT 

after cardiac surgery to reduce postoperative complications 

(weak recommendation, moderate-quality evidence).

Although mortality after cardiac surgery has been 

decreasing over the past decade, high-risk patients undergo-

ing complex surgery have a significant incidence of post-

operative organ failure, including AKI, myocardial injury, or 

cognitive disorder, resulting in increased lengths of hospital 

stay and increased cost. 56—58 These high-risk patients 

frequently have limited physiological reserve and the plausi-

bility for a beneficial application of GDHT appears to be strong 

based on the aim to individually optimise tissue oxygen de-

livery perioperatively and thus to avoid organ injury and 

haemodynamic decompensation. In the postoperative setting 

after cardiac surgery, this is achieved by individualised fluid 

optimisation, targeted usage of inotropes, and optimised 

haemoglobin concentration by RBC transfusions. Several 

studies have investigated GDHT after cardiac surgery, and a 

recent RCT with 126 high-risk patients undergoing coronary 

artery bypass grafting or valve repair demonstrated a treat-

ment effect of reducing postoperative mortality plus major 

complications as a composite outcome from 45% to 27% 

(P=0.04). In addition, ICU and hospital lengths of stays were 

reduced. 59 In an associated meta-analysis (including six trials 

and 825 patients) and one additional meta-analysis (five trials 

and 699 patients), a lower rate of postoperative complications 

was demonstrated, with no reduction in mortality. 59,60

The application of a GDHT algorithm as part of an AKI-

prevention bundle in high-risk surgical patients is an inter-

esting concept, which has been assessed in a multicentre RCT 

in patients undergoing cardiac surgery (n=278) and is 

currently being studied in patients undergoing major sur-

gery. 61,62 In addition to GDHT, interventions of the AKI-

prevention bundle include discontinuation of ACE inhibitors 

or angiotensin receptor blockers, tight glycaemic control, and 

avoidance of nephrotoxic drugs or radiocontrast agents. This 

treatment strategy was of benefit to cardiac surgical patients 

at high risk of developing AKI in the above-mentioned study 

by Zarbock and colleagues. 61 In the intervention group, 65% of 

patients received the complete bundle vs only 4.2% in the 

control group (P<0.001); although AKI rates were similar in 

both groups, the occurrence of moderate and severe AKI was 

lower in the intervention group (14% vs 24%; 95% CI 0.9—19.1; 

P=0.034). 61

Similar to GDP, GDHT after cardiac surgery is one of the 

recommendations in the most recent ERAS guidelines after 

cardiac surgery emphasising that GDHT can guide periopera-

tive resuscitation and prevent postoperative organ injury. 55

Emergency surgery

Statement 16: There is currently insufficient evidence to 

recommend routine use of GDHT protocols in patients un-

dergoing emergency abdominal surgery (weak recommenda-

tion; low-quality evidence).

A lack of data on patients undergoing emergency abdom-

inal surgery has been highlighted as one of the key limitations 

of the GDHT evidence base to date. Of those trials incorpo-

rating mixed surgical populations, emergency surgery typi-

cally made up <10% of all participants. Patients presenting for 

emergency surgery can have important pathophysiological 

differences from those undergoing planned surgery. They can 

have coexisting critical illness, bleeding, or other factors that 

can disrupt normal haemodynamics even before surgery 

starts. It is therefore rational to consider that they might 

respond differently to GDHT, and to assess them separately in 

trials. A small pilot study 63 has been followed up by two effi-

cacy studies, the smaller of which (n=43) compared two vari-

ants of a GDHT approach. 21,64 The larger GAS-ART trial (n=312) 

did not find any reduction in the composite outcome of com-

plications or mortality within 90 days. 64 Given the modest size 

of the few trials currently available, there are insufficient data 

available to make firm recommendations. The ongoing FLO-

ELA trial 17 will study >3000 emergency abdominal surgical 

cases in the UK, and will report in the coming years.

Hip fracture

Statement 17: We recommend considering use of GDHT to 

reduce perioperative complications in patients with hip frac-

ture (weak recommendation; low-quality evidence).

Hip fractures are common in older individuals with high 

30-day mortality rates (6—9%). 65—67 In addition, patients have a 

high risk of perioperative complications owing to their limited 

cardiopulmonary reserve based on surgery-associated stress 

and their fracture. 68 Early surgery has been introduced as a 

concept to improve outcomes and reduce mortality. 65,66 

Furthermore, ERAS pathways have been described with 

beneficial effects, including reduced length of hospital stay 

and reduced postoperative complications. 69 GDHT as part of 

an ERAS pathway is relatively novel and was assessed only 

recently in a cohort study comparing patients receiving peri-

operative GDHT (n=279) vs patients without GDHT (n=272). 70 

The GDHT group had improved outcomes regarding the pri-

mary endpoint with fewer patients presenting with intra-

operative haemodynamic instability (37.5% vs 28.0%; P=0.017). 

Secondary endpoints showed fewer postoperative cardiovas-

cular, respiratory, and infectious complications in the inter-

vention group (21% vs 3.9%; P<0.001), reduced hospital length 

of stay (11 vs 8 days, P<0.001), and higher 1-yr survival (73% vs 

84%, P<0.003). Future studies will be necessary to validate 

these results from a single-centre nonrandomised study, 

describing beneficial outcomes with GDHT in patients with hip 

fracture.

QUESTION 4. What are the future directions and research 

questions for perioperative GDHT?

Could technological assistance support physiological compliance 

with GDHT algorithms?

Smaller efficacy trials of GDHT interventions suggest good 

achievement of the planned physiological goals. 35,71 Larger 

clinical effectiveness trials, although suggesting good overall 

compliance with the conduct of the intervention protocols, 

might not report the degree of this physiological compliance (i. 

e. the extent to which algorithm targets were met). Other 

studies that have reviewed individual patient records have
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shown that implementation of GDHT protocols by anaesthesia 

providers is highly variable, and the time-in-target for hae-

modynamic parameters was less than would be expected to 

improve clinical outcomes. 72 Could technological assistance 

such as closed-loop systems be implemented into GDHT to 

help maximise physiological compliance? Given the absence 

of benefit seen in OPTIMISE II where a relatively simple GDHT 

approach was used, such developments will need rigorous 

assessment of their effects on clinical outcomes.

Would further ‘individualisation’ of GDHT interventions improve 

clinical outcomes?

Although a large pragmatic approach to GDHT (OPTIMISE II) 

in a relatively unselected population did not improve clinical 

outcomes, are there as-yet undefined or unexplored patient 

endotypes or phenotypes that could benefit more or less from 

GDHT protocols? Alternatively are there individual compo-

nents of GDHT protocols that might be more or less beneficial 

to patients, and can efficient trials be designed to help answer 

these questions? Is there a role for platform trials or other 

novel trial designs in exploring different components of GDHT 

protocols?

Is the prediction of future haemodynamic changes feasible and 

clinically beneficial?

Recent studies have examined the prediction of future 

haemodynamic changes using machine learning. 73,74 The core 

rationale is that an early warning of future haemodynamic 

instability would allow pre-emptive treatment before inade-

quate organ perfusion occurs. Studies have not shown benefit 

consistently, 73,75 but as technology evolves can these variables 

aid clinicians in predicting major haemodynamic changes? As 

with any developments in this field, robust assessment of 

clinical effectiveness will be required, in particular to explore 

whether or not these technologies are superior to currently 

available measurements. 76,77 A related, broader question is the 

degree to which artificial intelligence-based technologies can 

assist in addressing perioperative haemodynamic monitoring 

and therapy.

Strengths and limitations

We used a well-established modified Delphi process 

combining literature review with expert interpretation. The 

practical consensus statements and recommendations focus 

on important clinical areas where variation in clinical practice 

exists. The diverse group of experts was carefully selected to 

be from a variety of professional groups, institutional types, 

and locations. We included experts from all subspecialties of 

anaesthesia for which recommendations were made.

Our work has some limitations. 78 The methodology did not 

include a formal systematic review or meta-analysis of the 

literature. The POQI-11 group did not include lay members, 

patients, or representatives of the target population (i.e. pa-

tients who receive haemodynamic therapy during surgery). 

The process is partly based on expert interpretation; although 

a diverse group of experts was selected, it remains a discus-

sion between a limited sample of clinicians, so there is some 

risk of bias. We did not formally document iterations of 

statements and recommendations during the review and 

revision process in the work group and plenary (whole POQI-11 

group) sessions. We used the GRADE framework but did not 

formally document the process of agreeing on the classifica-

tion of the strength of recommendations and the quality of

evidence. We highlight areas of uncertainty or persisting 

discord in the explanatory text and rationale.

During the POQI meeting, the results of the large OPTIMISE 

II trial were not available. Given the predicted impact of those 

results, a number of hypothetical statements were discussed 

and refined through the iterative rounds, pending release of 

the trial results. The need to finalise and confirm consensus on 

the statements influenced by the OPTIMISE II results is a de-

viation from the usual POQI methodology. However, we do not 

feel this reduces the validity of these statements. Although 

voting by attendees of the EBPOM 2023 World Congress cannot 

be considered formal expert peer review, it is an interesting 

and novel methodological development to explore the 

response of a large informed and interested audience to ‘fresh’ 
recommendations by an expert group. In this regard, the 

voting was conducted anonymously using the Slido software 

to minimise bias associated with public declaration of views in 

front of peers. Several members of the whole POQI-11 group 

have been supported by industry partners for education or 

research work in the topic areas of this consensus conference. 

All potential interests have been declared below. None of the 

entities listed had any role in the design, conduct, or reporting 

of the POQI recommendations, nor in the preparation or sub-

mission of the manuscript.

Conclusions

Recent large clinical effectiveness trials have contradicted the 

previous evidence base suggesting the benefits of GDHT in 

broad, relatively unselected populations, so routine use of the 

current approach to GDHT is not recommended. Despite this, 

much of the underlying physiology remains relevant, and peri-

operative haemodynamic therapy might still have an impact on 

patient outcomes. A number of avenues remain open to explore 

newer approaches to this key area of perioperative care.
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